A partir de ahora empesaremos a trabajar con el COREL, programa para crear imagenes, a comparacion de lo que era el PHOTOSHOP el cual era un programa para retocar...
A continuación vamos a mostrar como fuimos realizando todos los TP de COREL.
TP:1 Este TP fue la presentacion del Corel en la que nos enseñaba todas las herramientas que luego utilizamos. Luego de estas indicaciones Hicimos un"Gallo" con las herramientas RECTÁNGULO, POLIGONO, SELECCIÓN, y luego utilizamos el CONTORNO PARA ENGROSAR LAS LINEAS y finalmente lo pintamos con la paleta
TP:2
En este TP realizamos lineas y luego las modificamos con las herramientas :MANO ALZADA, FORMA , SELECCIÓN ,BÉIZER.
TP:3
En este TP consistió en el orden delos elementos como organizar uno delante o debajo de otro... es muy simple nos dirigimos al menú de herramientas en la opción ORGANIZAR pero antes abremos seleccionado la figura y luego vamos a la opción ya repetida anteriormente ,luego hacemos click en AGRUPAR y para desagrupar volvemos a seleccionar la figura y volvemos a ORGANIZAR desagrupar.
TP:3
En este TP hemos pintado o coloreado las figuras con las diferentes herramientas de con la herramienta RELLENO de la barra de herramientas utilizamos: COLOR DE RELLENO :permite crear rellenos uniformes. RELLENONO DEGRADADO: que nos permite realizar texturas CONICAS , etc. Luego utilizamos la herramienta RELLENO DE PATRÓN: nos permite trabajar con imágenes repetidas formando rellenos mosaícos. Y por ultima la herramienta SIN RELLENO: que permite dar transparencia a un objeto vectorial.
TP:4
Este TP representa un trabajo general de todo lo aprendido utilizamos todas las herramientas referidas anteriormente , es decir, pusimos todo en practica.
El dia 21 de Octubre los chicos del INSTITUTO EDUCACIONAL ESTRADA, fueron a rendir un examen a la UNIVERSIDAD TECNOLOGICA NACIONAL.
Estos chicos fueron:
Ocho chicos de 3ro: Julieta Aguiar, Agustina Barria, Julieta Saltalamacchia, Micaela Vandoni,Dana Gotelli, Noelia Reartes y Agustin Luna
Una chica de 4to: Rocio Alma
Tres chicos de 5to: Jesica Sabrina Aragón, Lucio Sánchez y Solange Santi
Tambien chicos de la tarde como: Rodrigo, Kevin, Joel, Ivan y Lisandro
El gurpo estuvo divido en dos, un grupo rendio WINDOWS (Rodrigo, Kevin, Joel y Lisandro) y el otro gurpo reindio PHOTOSHOP (Julieta, Agustina, Julieta, Micaela, Agustin, Noelia, Rocio, Sabrina, Lucio, Solange).
En todo este tiempo de tensión nos acompañaron el profesor, Mario Panelli y el director Alejandro Guillot.
Fue una experiencia unica, es la primera ves que se realiza en el colegio y se va a seguir realizando después de la misma.
Luego de la tortura para uno y para otros no fuimos todos a comer al MC DONALS, en el cual estubimos haciendo tiempo para que corrigieran los EXAMENES... Despues de un tiempo fuimos a que nos dieran la nota, todos ansioso por saber cuanto nos habiamos sacado y si no habiamos desaprobado, por suerte no desaprobo nadie.
Hay que destacar que el alumno Lucio Sanches se saco un 100 SOBRE 100, y los demas alumanos lo aprobaron con 90;80;87;67;62, etc...
ESTOS SON LOS RESULTADOS DE TODOS LOS CHICOS QUE PARTICIPARON EN ESTA EXPERIENCIA NUEVA...
La televisión: Es un sistema para la transmisión y recepción de imágenes en movimiento y sonido a distancia.
Esta transmisión puede ser efectuada mediante ondas de radio o por redes especializadas de televisión por cable. El receptor de las señales es el televisor. La palabra "televisión" es un híbrido de la voz griega "tele" (distancia) y la latina "visio" (visión). El término televisión se refiere a todos los aspectos de transmisión y programación de televisión. A veces se abrevia como TV. Este término fue utilizado por primera vez en 1900 por Constantin Perski en el Congreso Internacional de Electricidad de París (CIEP). El Día Mundial de la Televisión se celebra el 21 de noviembre en conmemoración de la fecha en que se celebró en 1996 el primer Foro Mundial de Televisión en las Naciones Unidas.
La alta definición "HD"
El sistema de televisión de definición estándar, conocido por la siglas "SD", tiene, en PAL, una definición de 720x576 pixeles (720 puntos horizontales en cada línea y 576 puntos verticales que corresponden a las líneas activas del PAL) esto hace que una imagen en PAL tenga un total de 414.720 pixeles. En NSTC se mantienen los puntos por línea pero el número de líneas activas es solo de 525 lo que da un total de pixeles de 388.800 siendo los pixeles levemente anchos en PAL y levemente altos en NSTC. Se han desarrollado 28 sistemas diferentes de televisión de alta definición. Hay diferencias en cuanto a relación de cuadros, número de líneas y pixeles y forma de barrido. Todos ellos se pueden agrupar en cuatro grandes grupos de los cuales dos ya han quedado obsoletos (los referentes a las normas de la SMPTE 295M, 240M y 260M) manteniéndose otros dos que difieren, fundamentalmente, en el número de líneas activas, uno de 1080 líneas activas (SMPT 274M) y el otro de 720 líneas activas (SMPT 269M). En el primero de los grupos, con 1.080 líneas activas, se dan diferencias de frecuencia de cuadro y de muestras por línea (aunque el número de muestras por tiempo activo de línea se mantiene en 1.920) también la forma de barrido cambia, hay barrido progresivo o entrelazado. De la misma forma ocurre en el segundo grupo, donde las líneas activas son 720 teniendo 1.280 muestras por tiempo de línea activo. En este caso la forma de barrido es siempre progresiva. En el sistema de HD de 1.080 líneas y 1.920 muestras por línea tenemos 2.073.600 pixeles en la imagen y en el sistema de HD de 720 líneas y 1.280 muestras por líneas tenemos 921.600 pixeles en la pantalla. En relación con los sistemas convencionales tenemos que la resolución del sistema de 1.080 líneas es 5 veces mayor que el del PAL y cinco veces y media que el del NTSC. Con el sistema de HD de 720 líneas es un 50% mayor que en PAL y un 66% mayor que en NTSC.
TIPOS DE TELEVISORES: Difusión analógica: La televisión hasta tiempos recientes, principios del siglo XXI, fue analógica totalmente y su modo de llegar a los televidentes era mediante el aire con ondas de radio en las bandas de VHF y UHF. Pronto salieron las redes de cable que distribuían canales por las ciudades. Esta distribución también se realizaba con señal analógica, las redes de cable pueden tener una banda asignada, más que nada para poder realizar la sintonía de los canales que llegan por el aire junto con los que llegan por cable. Su desarrollo depende de la legislación de cada país, mientras que en algunos de ellos se desarrollaron rápidamente, como en Inglaterra y Estados Unidos, en otros como España no han tenido casi importancia hasta que a finales del siglo XX la legislación permitió su instalación.
El satélite, que permite la llegada de la señal a zonas muy remotas y de difícil acceso, su desarrollo, a partir de la tecnología de los lanzamientos espaciales, permitió la explotación comercial para la distribución de las señales de televisión. El satélite realiza dos funciones fundamentales, la de permitir los enlaces de las señales de un punto al otro del orbe, mediante enlaces de microondas, y la distribución de la señal en difusión
Difusión digital:
Estas formas de difusión se han mantenido con el nacimiento de la televisión digital con la ventaja de que el tipo de señal es muy robusta a las interferencias y la norma de emisión está concebida para una buena recepción. También hay que decir que acompaña a la señal de televisión una serie de servicios extras que dan un valor añadido a la programación y que en la normativa se ha incluido todo un campo para la realización de la televisión de pago en sus diferentes modalidades.
La difusión de la televisión digital se basa en el sistema DVB Digital Video Broadcasting y es el sistema utilizado en Europa. Este sistema tiene una parte común para la difusión de satélite, cable y terrestre. Esta parte común corresponde a la ordenación del flujo de la señal y la parte no común es la que lo adapta a cada modo de transmisión. Los canales de transmisión son diferentes, mientras que el ancho de banda del satélite es grande el cable y la vía terrestre lo tienen moderado, los ecos son muy altos en la difusión vía terrestre mientas que en satélite prácticamente no existen y en el cable se pueden controlar, las potencias de recepción son muy bajas para el satélite (llega una señal muy débil) mientras que en el cable son altas y por vía terrestre son medias, la misma forma tiene la relación señal-ruido.
Televisión terrestre: La difusión analógica por vía terrestre, por radio, está constituida de la siguiente forma; del centro emisor se hacen llegar las señales de vídeo y audio hasta los transmisores principales situados en lugares estratégicos, normalmente en lo alto de alguna montaña dominante. Estos enlaces se realizan mediante enlaces de microondas punto a punto. Los transmisores principales cubren una amplia zona que se va rellenando, en aquellos casos que haya sombras, con reemisores. La transmisión se realiza en las bandas de UHF y VHF, aunque esta última está prácticamente extinguida ya que en Europa se ha designado a la aeronáutica y a otros servicios como la radio digital. La difusión de la televisión digital vía terrestre, conocida como TDT se realiza en la misma banda de la difusión analógica. Los flujos de transmisión se han reducido hasta menos de 6 Mb/s lo que permite la incorporación de varios canales. Lo normal es realizar una agrupación de cuatro canales en un Mux el cual ocupa un canal de la banda (en analógico un canal es ocupado por un programa). La característica principal es la forma de modulación. La televisión terrestre digital dentro del sistema DVB-T utiliza para su transmisión la modulación OFDMOrthogonal Frecuency Division Multiplex que le confiere una alta inmunidad a los ecos, aún a costa de un complicado sistema técnico. La OFDM utiliza miles de portadoras para repartir la energía de radiación, las portadoras mantienen la ortogonalidad en el dominio de la frecuencia. Se emite durante un tiempo útil al que sigue una interrupción llamada tiempo de guarda. Para ello todos los transmisores deben estar síncronos y emitir en paralelo un bit del flujo de la señal. El receptor recibe la señal y espera el tiempo de guarda para procesarla, en esa espera se desprecian los ecos que se pudieran haber producido. La sincronía en los transmisores se realiza mediante un sistema de GPS.
Televisión por cable: La televisión por cable surge por la necesidad de llevar señales de televisión y radio, de índole diversa, hasta el domicilio de los abonados, sin necesidad de que éstos deban disponer de diferentes equipos receptores, reproductores y sobre todo de antenas.La visión estereoscopica o estereovisión es una técnica ya conocida y utilizada en la fotografía de principios del siglo XX. A finales de ese mismo siglo el cine en 3D, en tres dimensiones, era ya habitual y estaba comercializado. A finales de la primera década del siglo XXI comienzan a verse los primeros sistemas comerciales de televisión en 3D basados en la captación, transmisión y representación de dos imágenes similares desplazadas la una respecto a la otra y polarizadas. Aunque se experimentó algún sistema sin que se necesitaran gafas con filtros polarizados para ver estas imágenes en tres dimensiones, como el de la casa Philips, los sistemas existentes, basados en el mismo principio que el cine en 3D, precisan de la utilización de filtros de color, color rojo para el ojo derecho y cian para el ojo izquierdo.
Precisa de una red de cable que parte de una cabecera en donde se van embebiendo, en multiplicación de frecuencias, los diferentes canales que tienen orígenes diversos. Muchos de ellos provienen de satélites y otros son creados ex profeso para la emisión por cable. La ventaja del cable es la de disponer de un canal de retorno, que lo forma el propio cable, que permite el poder realizar una serie de servicios sin tener que utilizar otra infraestructura. La dificultad de tender la red de cable en lugares de poca población hace que solamente los núcleos urbanos tengan acceso a estos servicios. La transmisión digital por cable esta basada en la norma DVB-C, muy similar a la de satélite, y utiliza la modulación QAM.
Televisión por satélite: La difusión vía satélite se inició con el desarrollo de la industria espacial que permitió poner en órbita geoestacionaria satélites con transductores que emiten señales de televisión que son recogidas por antenas parabólicas.
Televisión IP (IPTV):
El alto coste de la construcción y puesta en órbita de los satélites, así como la vida limitada de los mismos, se ve aliviado por la posibilidad de la explotación de otra serie de servicios como son los enlaces punto a punto para cualquier tipo de comunicación de datos. No es desdeñable el uso militar de los mismos, aunque parte de ellos sean de aplicaciones civiles, ya que buena parte de la inversión esta realizada con presupuesto militar. La ventaja de llegar a toda la superficie de un territorio concreto, facilita el acceso a zonas muy remotas y aisladas. Esto hace que los programas de televisión lleguen a todas partes. La transmisión vía satélite digital se realiza bajo la norma DVB-S, la energía de las señales que llegan a las antenas es muy pequeña aunque el ancho de banda suele ser muy grande. El desarrollo de redes IP, basadas en accesos de los clientes a las mismas mediante ADSL o fibra óptica, que proporcionan gran ancho de banda, así como el aumento de las capacidades de compresión de datos de los algoritmos tipo MPEG, ha hecho posible la distribución de la señal de televisión de forma digital encapsulada en mediante protocolo IP.
Han surgido así, a partir del año 2003, plataformas de distribución de televisión IP (IPTV) soportadas tanto en redes del tipo ADSL, VDSL o de fibra óptica para visualización en televisor, como para visualización en ordenadores y teléfonos móviles.
LA TELEVISIÓN 3D El sistema de captación está compuesto por dos cámaras convencionales o de alta resolución debidamente adaptadas y sincronizadas controlando los parámetros de convergencia y separación así como el monitoreado de las imágenes captadas para poder corregir en tiempo real los defectos propios del sistema. Normalmente se realiza una grabación y una posterior postproducción en donde se corrigen los defectos inherentes a este tipo de producciones (aberraciones, diferencias de colorimetría, problemas de convergencia, etc.).
Vamos a hacer la clasificación de los monitores de dos maneras distintas:
1. Atendiendo al color:
1.1 Monitores color : Las pantallas de estos monitores están formadas internamente por tres capas de material de fósforo, una por cada color básico (rojo, verde y azul). También consta de tres cañones de electrones, que al igual que las capas de fósforo, hay uno por cada color. Para formar un color en pantalla que no sea ninguno de los colores básicos, se combinan las intensidades de los haces de electrones de los tres colores básicos.
1.2 Monitores monocromáticos : Muestra por pantalla un solo color: negro sobre blanco o ámbar, o verde sobre negro. Uno de estos monitores con una resolución equivalente a la de un monitor color, si es de buena calidad, generalmente es más nítido y más legible.
2. Atendiendo a la tecnología usada:
2.1 Monitores de cristal líquido : Los cristales líquidos son sustancias transparentes con cualidades propias de líquidos y de sólidos. Al igual que los sólidos, una luz que atraviesa un cristal líquido sigue el alineamiento de las moléculas, pero al igual que los líquidos, aplicando una carga eléctrica a estos cristales, se produce un cambio en la alineación de las moléculas, y por tanto en el modo en que la luz pasa a través de ellas. Una pantalla LCD está formada por dos filtros polarizantes con filas de cristales líquidos alineados perpendicularmente entre sí, de modo que al aplicar o dejar de aplicar una corriente eléctrica a los filtros, se consigue que la luz pase o no pase a través de ellos, según el segundo filtro bloquee o no el paso de la luz que ha atravesado el primero. El color se consigue añadiendo 3 filtros adicionales de color (uno rojo, uno verde, uno azul). Sin embargo, para la reproducción de varias tonalidades de color, se deben aplicar diferentes niveles de brillo intermedios entre luz y no-luz, lo cual se consigue con variaciones en el voltaje que se aplica a los filtros.
• Resolución: La resolución máxima de una pantalla LCD viene dada por el número de celdas de cristal líquido.
• Tamaño: A diferencia de los monitores CRT, se debe tener en cuenta que la medida diagonal de una pantalla LCD equivale al área de visión. Es decir, el tamaño diagonal de la pantalla LCD equivale a un monitor CRT de tamaño superior. Mientras que en un monitor clásico de 15" de diagonal de tubo sólo un máximo de 13,5" a 14" son utilizables, en una pantalla portátil de 15" son totalmente útiles.
En la actualidad coexisten varios tipos:
• Dual Scan (DSTN) : ya no muy utilizadas, razonablemente buenas pero dependen de las condiciones de iluminación del lugar donde se esté usando el portátil.
• HPA : una variante moderna de las anteriores, de contraste ligeramente superior, pero sólo ligeramente superior, sin duda peor que las TFT.
• Matriz Activa (TFT) : permite una visualización perfecta sean cuales sean las condiciones de iluminación exteriores.
2.2 Monitores con tubos de rayos catódicos : Las señales digitales del entorno son recibidas por el adaptador de VGA. El adaptador lleva las señales a través de un circuito llamado convertidor analógico digital (DAC). Generalmente, el circuito de DAC está contenido dentro de un chip especial que realmente contiene tres DAC, uno para cada uno de los colores básicos utilizados en la visualización: rojo, azul y verde. Los circuitos DAC comparan los valores digitales enviados por la PC en una tabla que contiene los niveles de voltaje coincidentes con los tres colores básicos necesarios para crear el color de un único píxel. El adaptador envía señales a los tres cañones de electrones localizados detrás del tubo de rayos catódicos del monitor (CRT). Cada cañón de electrones expulsa una corriente de electrones, una cantidad por cada uno de los tres colores básicos.
El adaptador también envía señales a un mecanismo en el cuello del CRT que enfoca y dirige los rayos de electrones. Parte del mecanismo es un componente, formado por material magnético y bobinas, que abraza el cuello del tubo de rayos catódicos, que sirve para mandar la desviación de los haces de electrones, llamado yugo de desvío magnético. Las señales enviadas al yugo de ayuda determinan la resolución del monitor (la cantidad de píxeles horizontal y verticalmente) y la frecuencia de refresco del monitor, que es la frecuencia con que la imagen de la pantalla será redibujada.
La imagen esta formada por una multitud de puntos de pantalla, uno o varios puntos de pantalla forman un punto de imagen (píxel), una imagen se constituye en la pantalla del monitor por la activación selectiva de una multitud de puntos de imagen.
Los rayos pasan a través de los agujeros en una placa de metal llamada máscara de sombra o mascara perforada.
El propósito de la máscara es mantener los rayos de electrones alineados con sus blancos en el interior de la pantalla de CRT. El punto de CRT es la medición de como cierran los agujeros unos a otros; cuanto más cerca estén los agujeros, más pequeño es el punto. Los agujeros de la mencionada máscara miden menos de 0,4 milímetros de diámetro.
El electrón golpea el revestimiento de fósforo dentro de la pantalla. (El fósforo es un material que se ilumina cuando es golpeado por electrones). Son utilizados tres materiales de fósforo diferentes, uno para cada color básico. El fósforo se ilumina más cuanto mayor sea el número de electrones emitido. Si cada punto verde, rojo o azul es golpeado por haces de electrones igualmente intensos, el resultado es un punto de luz blanca. Para lograr diferentes colores, la intensidad de cada uno de los haces es variada. Después de que cada haz deje un punto de fósforo, este continúa iluminado brevemente, a causa de una condición llamada persistencia. Para que una imagen permanezca estable, el fósforo debe de ser reactivado repitiendo la localización de los haces de electrones.
Después de que los haces hagan un barrido horizontal de la pantalla, las corrientes de electrones son apagadas cuando el cañón de electrones enfoca las trayectorias de los haces en el borde inferior izquierdo de la pantalla en un punto exactamente debajo de la línea de barrido anterior, este proceso es llamado refresco de pantalla.
Los barridos a través de la superficie de la pantalla se realizan desde la esquina superior izquierda de la pantalla a la esquina inferior derecha. Un barrido completo de la pantalla es llamado campo. La pantalla es normalmente redibujada, o refrescada, cerca de unas 60 veces por segundo, haciéndolo imperceptible para el ojo humano.
viernes, 20 de agosto de 2010
Este blog lo vamos a utilizar para públicar nuestros trabajos de informática y también información sobre distintos temas en relación a la tecnología. Lo utilizaremos en el transcurso de toda la secundaria, a partir de 3º E.S.B.
Profesor: Mario Panelli
Integrantes: Aguiar Julieta
Barria Agustina
La Pizarra Interactiva, también denominada Pizarra Digital Interactiva (PDi) consiste en un ordenador conectado a un videoproyector, que muestra la señal de dicho ordenador sobre una superficie lisa y rígida, sensible al tacto o no, desde la que se puede controlar el ordenador, hacer anotaciones manuscritas sobre cualquier imagen proyectada, así como guardarlas, imprimirlas, enviarlas por correo electrónico y exportarlas a diversos formatos. La principal función de la pizarra es, pues, controlar el ordenador mediante esta superficie con un bolígrafo, el dedo -en algunos casos- u otro dispositivo como si de un ratón se tratara. Es lo que nos da interactividad con la imagen y lo que lo diferencia de una pizarra digital normal (ordenador + proyector).
TIPOS DE PIZARAS
PDi (Pizarra Digital Interactiva de gran formato)
Es el caso en que el presentador realiza las anotaciones desde y sobre la superfície de proyección. Los elementos que la forman son una pizarra conectada a un ordenador y este a un videoproyector. Utilizando un lápiz interactivo podemos llevar a cabo todas las funciones. Igualmente, en algunos modelos se puede utilizar el dedo. Utiliza tecnología por inducción electromagnética y si es táctil puedes ser por infrarrojos, resistiva, etc.
PDiP (Pizarra Digital Interactiva Portátil)
Aunque una PDi se puede mover de un lugar a otro poniéndole un soporte pedestal con ruedas, se dice que una PDI es portátil cuando cumple una de las dos funciones siguientes:
a) Se puede trasladar fácilmente de una clase a otra y de un lugar a otro
b) Además se puede impartir la clase desde cualquier lugar del aula y se puede utilizar cualquier superficie de proyección aunque sea una pantalla enrollable o una pantalla gigante en un auditorio.
En el primer caso estamos ante un accesorio que se suele adherir a una superficie rígida para convertirla en una pizarra interactiva (Ej: eBeam y Mimio). En el segundo estamos ante una PDiP tipo tableta que se conecta al ordenador sin cables (por RF o Bluetooth) y, en algunos casos, hasta permite varios alumnos actúen simultáneamente en trabajos en equipo o en competición) y permite controlar el ordenador y hacer anotaciones desde cualquier lugar del aula. Incluso en este último caso, se puede utilizar un monitor o una TV plana y se elimina el videoproyector (Ej: Mobi de Interwrite).
Ventajas de utilización de cada tipo de Pizarra Interactiva
La PDi tiene la ventaja que se escribe directamente sobre la propia pizarra, de la misma forma que se hace sobre cualquier pizarra convencional, lo que la hace especialmente sencilla de utilizar por un profesor desde el primer minuto.
La PDiP tiene la ventaja de que se puede trasladar a cualquier lugar, con lo que, sin necesidad de video-proyector, un profesor puede preparar los ejercicios interactivos en su despacho o en su casa y luego utilizarlos en clase, así como realizar clases a distancia, en tiempo real, a través de Internet, sin necesidad de vídeo-proyector. Otra ventaja es para personas con dificultades motrices, dado que pueden controlar cualquier aplicación de ordenador y hacer las anotaciones desde su propio asiento.
Con el Tablet Monitor es muy sencillo hacer presentaciones en una Sala de Actos, en la que la pantalla de proyección puede ser gigante, porque las anotaciones se hacen a escala 1:1 en el Tablet Monitor y la audiencia las verá a gran tamaño en la gran pantalla. Otra ventaja es para personas con dificultades visuales. Video Tablet Monitor: Tablet monitor
Elementos que integran la pizarra interactiva
Ordenador multimedios (portátil o sobre mesa), dotado de los elementos básicos. Este ordenador debe ser capaz de reproducir toda la información multimedios almacenada en disco. El sistema operativo del ordenador tiene que ser compatible con el software de la pizarra proporcionado.
Proyector, con objeto de ver la imagen del ordenador sobre la pizarra. Hay que prever una luminosidad y resolución suficiente (Mínimo 2000 Lumen ANSI y 1024x768). El proyector conviene colocarlo en el techo y a una distancia de la pizarra que permita obtener una imagen luminosa de gran tamaño.
Medio de conexión, a través del cual se comunican el ordenador y la pizarra. Existen conexiones a través de bluetooth, cable (USB, paralelo) o conexiones basadas en tecnologías de identificación por radiofrecuencia.
Pantalla interactiva, sobre la que se proyecta la imagen del ordenador y que se controla mediante un puntero o incluso con el dedo. Tanto los profesores como los alumnos tienen a su disposición un sistema capaz de visualizar e incluso interactuar sobre cualquier tipo de documentos, Internet o cualquier información de la que se disponga en diferentes formatos, como pueden ser las presentaciones multimedios, documentos de disco o vídeos.
Software de la pizarra interactiva, proporcionada por el fabricante o distribuidor y que generalmente permite: gestionar la pizarra, capturar imágenes y pantallas, disponer de plantillas, de diversos recursos educativos, de herramientas tipo zoom, conversor de texto manual a texto impreso y reconocimiento de escritura, entre otras.
El funcionamiento de la pizarra interactiva
1.La pizarra transmite al ordenador las instrucciones correspondientes.
2.El ordenador envía al proyector de vídeo las instrucciones y la visualización normal.
3.El proyector de vídeo proyecta sobre la pizarra el resultado, lo que permite a la persona que maneja el equipo ver en tiempo real lo que hace sobre la pizarra y cómo lo interpreta el ordenador
Características de la pizarra interactiva
Resolución, se refiere a la densidad de la imagen en la pantalla y se expresa en líneas por pulgada (i.e.: 500 lpp). Las diferentes tecnologías ofrecen resoluciones que oscilan entre los 65 lpp y los 1.000 lpp. Aunque el videoproyector define la calidad de la imagen que se visualiza, cuanto mayor es la resolución de la pizarra tanto mayor calidad tendrá cualquier impresión realizada con una impresora. La demostración la podemos entender cuando no se utiliza videoproyector y se escribe en la pizarra. Se podrá comprobar entonces este detalle. Por otro lado permitirá una mayor precisión cuando se utilice con programas que exijan mucha precisión.
Superficie o área activa, es al área de dibujo de la pizarra interactiva, donde se detectan las herramientas de trabajo. Esta superficie no debe producir reflejos y debe ser fácil de limpiar.
Conexiones, las pizarras interactivas presentan los siguientes tipos de conexiones: cable (USB, serie), cable RJ45 (o de red) conexión sin cables (Bluetooth) o conexiones basadas en tecnologías de identificación por radiofrecuencia.
Punteros,dependiendo del tipo de pizarra utilizado, se puede escribir directamente con el dedo, con lápices electrónicos que proporcionan una funcionalidad similar a los ratones (disponen de botones que simulan las funciones de los botones izquierdo y derecho del ratón y de doble clic) o incluso con rotuladores de borrado en seco.
Software, las pizarras disponen de un software compatible con Windows 98, 2000, NT, ME, XP, Vista, V7; Linux(según modelo) y Mac (según modelo). Es conveniente que el software esté en el mayor número de idiomas posible, incluido castellano, catalán, gallego y euskera. Además debe contemplar alguna o todas de las siguientes opciones:
Reconocimiento de escritura manual y teclado en la pantalla.
Biblioteca de imágenes y plantilla:
Herramientas pedagógicas como, regla y transportador de ángulos, librerías de imágenes de Matemáticas, Física, Química, Geografía, Música, etc.
Capacidad para importar y salvar al menos en algunos de los siguientes formatos: JPG, BMP, GIF, HTML, PDF, PowerPoint...
Capacidad de importar y exportar en el formato: IWB, formato común a todas las pizarras digitales
Recursos didácticos en diversas áreas con distintos formatos (HTML, Flash, …)
Capacidad para crear recursos.
Integración con aplicaciones externas.
Beneficios para los docentes
Recurso flexible y adaptable a diferentes estrategias docentes:
El recurso se acomoda a diferentes modos de enseñanza, reforzando las estrategias de enseñanza con la clase completa, pero sirviendo como adecuada combinación con el trabajo individual y grupal de los estudiantes.
La pizarra interactiva es un instrumento perfecto para el educador constructivista ya que es un dispositivo que favorece el pensamiento crítico de los alumnos. El uso creativo de la pizarra sólo está limitado por la imaginación del docente y de los alumnos.
La pizarra fomenta la flexibilidad y la espontaneidad de los docentes, ya que estos pueden realizar anotaciones directamente en los recursos web utilizando marcadores de diferentes colores.
La pizarra interactiva es un excelente recurso para su utilización en sistemas de videoconferencia, favoreciendo el aprendizaje colaborativo a través de herramientas de comunicación:
Posibilidad de acceso a una tecnología TIC atractiva y sencillo uso.
La pizarra interactiva es un recurso que despierta el interés de los profesores a utilizar nuevas estrategias pedagógicas y a utilizar más intensamente las TIC, animando al desarrollo profesional.
El docente se enfrenta a una tecnología sencilla, especialmente si se la compara con el hecho de utilizar ordenadores para toda la clase.
Interés por la innovación y el desarrollo profesional:
La pizarra interactiva favorece del interés de los docentes por la innovación y al desarrollo profesional y hacia el cambio pedagógico que puede suponer la utilización de una tecnología que inicialmente encaja con los modelos tradicionales, y que resulta fácil al uso.
El profesor se puede concentrar más en observar a sus alumnos y atender sus preguntas (no está mirando la pantalla del ordenador)
Aumenta la motivación del profesor: dispone de más recursos, obtiene una respuesta positiva de los estudiantes...
El profesor puede preparar clases mucho más atractivas y documentadas. Los materiales que vaya creando los puede ir adaptando y reutilizar cada año.
Ahorro de tiempo:
La pizarra ofrece al docente la posibilidad de grabación, impresión y reutilización de la clase reduciendo así el esfuerzo invertido y facilitando la revisión de lo impartido.
Generalmente, el software asociado a la pizarra posibilita el acceso a gráficos, diagramas y plantillas, lo que permiten preparar las clases de forma más sencilla y eficiente, guardarlas y reutilizarlas.
Beneficios para los alumnos
Aumento de la motivación y del aprendizaje:
Incremento de la motivación e interés de los alumnos gracias a la posibilidad de disfrutar de clases más llamativas llenas de color en las que se favorece el trabajo colaborativo, los debates y la presentación de trabajos de forma vistosa a sus compañeros, favoreciendo la auto confianza y el desarrollo de habilidades sociales.
La utilización de pizarras digitales facilita la comprensión, especialmente en el caso de conceptos complejos dada la potencia para reforzar las explicaciones utilizando vídeos, simulaciones e imágenes con las que es posible interaccionar.
Los alumnos pueden repasar los conceptos dado que la clase o parte de las explicaciones han podido ser enviadas por correo a los alumnos por parte del docente.
Acercamiento de las TIC a alumnos con discapacidad:
Los estudiantes con dificultades visuales se beneficiarán de la posibilidad del aumento del tamaño de los textos e imágenes, así como de las posibilidades de manipular objetos y símbolos.
Los alumnos con problemas de audición se verán favorecidos gracias a la posibilidad de utilización de presentaciones visuales o del uso del lenguaje de signos de forma simultánea.
Los estudiantes con problemas kinestésicos, ejercicios que implican el contacto con las pizarras interactivas.
Los estudiantes con otros tipos de necesidades educativas especiales, tales como alumnos con problemas severos de comportamiento y de atención, se verán favorecidos por disponer de una superficie interactiva de gran tamaño sensible a un lápiz electrónico o incluso al dedo(en el caso de la pizarra táctil).
La empresa coreana Samsung, fue la primera en presentar un celular fabricado en serie, que cuenta con un proyector PICO (que conocimos hace unos meses atrás). Bajo el nombre de Samsung Show, cuenta con la misma interfaz táctil que presentara el Samsung TouchWiz y se pondrá a la venta (sólo en Corea) a finales de este mes.
El dispositivo no es uno de los más pequeños del mercado, pero puede ser sumamente útil para ejecutivos que quieran realizar presentaciones en una pantalla.
Si el microproyector PICO tiene un valor en nuestro país de 3000 pesos, imaginen cuanto puede valer esta joya de la ingeniería en estas pampas….